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PRESSURE GRADIENTS GENERATED DURING 
THE DRYING OF POROUS SHAPES 

R. D. GIBSON,* M. CROSS~_ and R. W. YOUNG* 

(Received 30 April 1978 and in revisedform 9 August 1978) 

Abstract-A mathematical model is developed to describe the pressure gradients generated during the 
drying of porous shapes of finite thickness. Simple analytic expressions for the temperature and pressure 
are derived which allow the important factors influencing the drying process to be highlighted. The model 
is successfully applied to the drying of dense silica shapes and demonstrates the sensitivity of the 

pressures generated during drying to the bulk porosity of the shape. 

NOMENCLATURE 

h, heat-transfer coefficient ; 
k, permeability; 

K thermal conductivity; 

1, shape haIf-thickness; 

L latent heat ; 

PWX pressure; 

PA, atmospheric pressure; 

Ro, gas constant ; 
6 time; 
T(x,t), temperature; 

r,, ambient temperature; 
T 

T:: 

drying time ; 
evaporation temperature; 

V(x, t), velocity ; 
-% coordinate; 
X(C), position of evaporation point. 

Greek symbols 

p(x,t), moisture density; 

Pw, density of water ; 

P* viscosity; 

4% porosity. 

1. KNTRODUCTION 

AN IMPORTANT stage in the manufacture of a large 
number of agglomeration processes is the drying. 
This is because most “green” agglomerates possess 
very little natural strength and, if the drying rate is 
too fast, high pressure gradients may be generated 
which can give rise to the formation of cracks (or 
total break-up in the case of iron ore pellets [2]). A 
comprehensive mathematical description of tempera- 
ture, moisture and pressure distributions in porous 
media has been developed by Luikov [3]. Although 
comprehensive, full utili~tion of Luikov’s system 
requires the knowledge of a large number of 
parameters which, in practice, it is not possible to 
achieve. Recently, however, a simplified approach 

To keep the mathemati~l analysis tractable we 
only consider one dimensional heat flow and assume 
that the drying rate is high compared to the rate of 
moisture diffusion. Figure 1 shows our simplified 
conception of the drying process (note the sym- 
metry). To minimise the number of parameters that 
need to be found and to retain only the primary 
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FIG. 1. Schematic diagram showing idealised model of I 
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[4] has been successfully used in calculating the 
maximum pressure gradients likely to be generated 
during the drying of iron ore pellets [S]. 

In this paper, a similar approach is used to model 
the pressure gradients generated during the drying of 
a porous shape of finite thickness and infinite height 
and depth. The analysis is then used with relevant 
data to assess the pressure gradients likely to be 
generated during the drying of large dense silica 
shapes used in coke oven construction. 

2. THE MATHEMATICAL MODEL 

As the porous refractory shape heats up and dries, 
the moisture evaporates and the resulting moisture 
vapour diffuses out towards the surface. The model 
therefore attempts to describe simultaneously the 
following aspects of the drying process: 

(i) the heat conduction through the shape, 
(ii) the evaporation of moisture within the shape 

and 
(iii) the pressure generated by the flow of the 

moisture vapour through the shape. 
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mechanisms present, the following assumptions are 
made: 

(i) the temperature and moisture distributions are 

independent of pressure; 

(ii) heat flows by conduction only through the 

shape; 
(iii) the shape is divided into two regions contain- 

ing (a) moisture only at a constant level and (b) 

moisture vapour only diffusing out; 
(iv) the vapour does not take part in the heat 

transfer process; 

(v) the temperature of the vapour is the associated 

solid temperature ; 
(vi) the basic interaction between the pressure, 

temperature and moisture is via the vapour gene- 

ration at the moving front and 
(vii) the movement of the front is slow by 

comparison with the conduction time. 

2.2. Ewluation of temperature and moisture 
distributions 

The moving front of moisture gives rise to a 

moving boundary problem for which Mikhailov and 

Shishedjiev [6] have developed sophisticated closed 
form analytic solutions. However under certain 

conditions a much simpler analytic solution may be 

derived as follows. Heat is supplied to a shape of semi- 
width. I and porosity, 4, so that 

K ;; (0, t) + h[ T, - T(0, t)] = 0, (1) 

where K is the thermal conductivity of the brick, h is 
the heat-transfer coefficient, T(x, t) is the temperature 

T, is the outside temperature and since the front 
.Y = X(t) is at the evaporation temperature Tk. then 

T[X(r), t] = TE. (2) 

For our application, on a thermal time scale, the 
movement of the front is slow by comparison with 

the rate of conduction, so that to a first approxi- 

mation we may assume 

i;* T 
---x0 
Fs2 ’ 

(3) 

within the dry region [i.e. 0 < x < X(t)]. Thus, in the 
dry part of the shape it follows that 

T(s, t) = TE + --______ (K+hX) (X-x). (4) 

Further, since the heat supply to the evaporation 
front is dominant, the speed of the front may be 
determined from the following heat balance, 

Kh(T,- TE) 
= (KfhX) ’ 

(5) 

where (~1 is the density of water and L is the latent 
heat of evaporation. The position of the moving 
front as a function of time is given by integration of 

equation (5), i.e. 

&wL(KX+)hX’) = Kh(T,- TE)t, (6) 

where it is assumed X(0) = 0. It follows that the 

drying time, T,, is given by 

T 
D 

= $PWLi(K + fhl) 
Kh(T,- TE) ’ 

(7) 

2.3. Evaluation of the maximum pressure gradients 
The gas flow in the dry part of the shape [0 < x 

< X(t)] is governed by Darcy’s law, 

v= _kap 
p ax’ 

where V(x, t) is the speed of the water vapour, p(x, t) 
is the pressure, k is the permeability and p the 
viscosity, together with the continuity equation 

and the perfect gas law 

P = R,pT, (10) 

where R, is the gas constant and p the. vapour 

density. 
For a number of applications [5] the right hand 

side of equation (9) is relatively small, so that pV is a 

function of time only. However, the continuity 

condition at the moving front implies 

pv= -pwz, (11) 

so that using equations (8) and (10) we have 

aP ROPPW 
-2T. 

%= k 
(12) 

Assuming, that the external pressure p,,, is atmos- 
pheric, integration of equation (12) yields 

p2 = pA2f 
2WKhK - TE) 

k@(K + hX) 

x xT +hK-T,) 
E (K+hX) 

The pressure gradient can be obtained from equa- 
tions (5), (12) and (13). 

3. RESULTS AND DISCUSSION 

From equation (13) it is readily seen that the 
maximum pressure gradient will occur right at the 
surface of the shape. The importance of this 
observation is that throughout the drying process 
there will be continuously high body forces near the 
surface implying that any cracks or lineations formed 
to relieve this imposed “tensile stress” will not be 
generated very far beneath the surface. 

It is well known that the bulk density (or 
alternatively porosity) of refractory shapes is a 
strongly limiting factor in the optimisation of drying 
times. Figure 2 shows a plot of permeability/viscosity 
against porosity for standard dense silica shapes. 
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FIG. 2. Permeability/viscosity ratio of a green silica shape 
as a function of porosity. 
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FIG. 3. Variation of maximum pressure gradients and 
drying times for porosity for two ambient drying tempera- 

tures: (a) 110°C; (b) 115°C. 

From this plot it is clear that the permeability is very 
sensitive to the shape porosity. This sensitivity 
results from the small mean particle size of the raw 
silica material used in the manufacturing process. 
This sensitivity is reflected in the evaluation of 
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Table 1. Value of parameters used in 
calculations 

Parameter Value 

h 0.001 gs-3’c-’ 
K 0.004gcms-3 ‘C-’ 
I 8.5cm 
L 530calg-’ 
TE too’c 
pw 1 gcmm3 

pressure gradients and, in fact, renders the bulk 
density of the shape the most significant factor in 
determining the maximum pressure gradients. Figure 
3 illustrates some typical mode1 results for the data 
shown in Table 1. From this plot and our other 
work it is clear that the factors affecting the drying 
time are of minimal importance with respect to the 
generated pressures when compared to the bulk 
density. In fact, from Fig. 3 it could be concluded 
that the pressure gradient would disappear for 
porosities greater than 0.3. This compares well with 
the experience of manufacturers of dense silica 
shapes where it is found that as the porosity 
increases above 0.3 very little spalling occurs during 
drying [7]. 

Assuming high pressure gradients can be as- 
sociated with higher incidences of surface cracking, 
these results have two main implications for the 
efficient production of dense silica shapes: 

(i) it is vitally important to ensure that correct 
bulk densities are maintained consistentIy and 

{ii) slower drying rates will not significantly 

reduce the maximum pressure gradients generated 
(i.e. intensity of surface cracking). 
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GRADIENTS DE PRESSION ASSOCIES AU SECHAGE DES CORPS POREUX 

R&sum&On dkveloppe un modile mathtmatique pour dtcrire les gradients de pression lors du s&&age 
des corps poreux d’bpaisseur finie. Des expressions analytiques simples pour la tempkrature et la pression 
sont obtenues et elles dtgagent les facteurs importants qui influencent le mkanisme du skhage. Le 
modtle est appliqut avec succ~s au skhage des corps denses siliceux et il montre la sensibilik B la 

pression crke lors du skhage de la masse poreuse. 

DRUCKGRADIENTEN IN POROSEN KORPERN BEIM TROCKNEN 

Zusammenfassung-Es wurde ein mathematisches Model1 zur Beschreibung der Druckgradienten 
entwickelt, die beim Trocknen von poriisen KGrpern endlicher Dicke auftreten. Es wurden einfache 
analytische Ausdriicke fiir Temperatur und Druck abgeleitet, welche erlauben, die wesentlichen 
Parameter hervorzuheben, die den TrockenprozeD beeinflussen. Das Model1 wurde erfolgreich auf den 
Trockenvorgang von Kiirpern aus dichter Kieselerde angewendet. Es zeigt die Abhlngigkeit der 

Druckverteilung wahrend des Trocknungsvorgangs von der Porositat im Kern des Kiirpers. 

B03HHKHOBEHME I-PAAMEHTOB AABJIEHWI IIPM CYUIKE I-IOPMCTLIX TEJI 

AIIHOTW~~- Ilpennoxesa MaTeMaTHyecKaR hionenb nm onpenenemm rpameHToB naeneaen, B03HH- 

xaioumx npH cymxe nop~c~brx Ten xotieqtiblx pa3Mepoe. BbIBeneHbI np0crble aHanmviecKHe ebqa- 

;KeHw arm 0npeneneHHn TehmepaTypbi H nasneslm, n03BOJIRlOlUHe BbUeJlHTb BaXHbIe I$aKTOpbl, 

KOHT~,IHP)‘IO~HC npouecc CYWKH. Monenb ycnemHo npmeHeHa noun pacvi+Ta CYUIKH nnoTHblx 
K~MHHeBblX o6pasuoe. npH 3TOM nOKa3aHO BJIHRHHe 06l&MHOii nOpHCTOCrH O6pa3Ua Ha I-panHeHTbl 

nameH~~,B03H~Kamuuie B np0seccecyLura. 


